Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACC CardioOncol ; 4(4): 535-548, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36444237

RESUMO

Background: Trametinib is a MEK1 (mitogen-activated extracellular signal-related kinase kinase 1) inhibitor used in the treatment of BRAF (rapid accelerated fibrosarcoma B-type)-mutated metastatic melanoma. Roughly 11% of patients develop cardiomyopathy following long-term trametinib exposure. Although described clinically, the molecular landscape of trametinib cardiotoxicity has not been characterized. Objectives: The aim of this study was to test the hypothesis that trametinib promotes widespread transcriptomic and cellular changes consistent with oxidative stress and impairs cardiac function. Methods: Mice were treated with trametinib (1 mg/kg/d). Echocardiography was performed pre- and post-treatment. Gross, histopathologic, and biochemical assessments were performed to probe for molecular and cellular changes. Human cardiac organoids were used as an in vitro measurement of cardiotoxicity and recovery. Results: Long-term administration of trametinib was associated with significant reductions in survival and left ventricular ejection fraction. Histologic analyses of the heart revealed myocardial vacuolization and calcification in 28% of animals. Bulk RNA sequencing identified 435 differentially expressed genes and 116 differential signaling pathways following trametinib treatment. Upstream gene analysis predicted interleukin-6 as a regulator of 17 relevant differentially expressed genes, suggestive of PI3K/AKT and JAK/STAT activation, which was subsequently validated. Trametinib hearts displayed elevated markers of oxidative stress, myofibrillar degeneration, an 11-fold down-regulation of the apelin receptor, and connexin-43 mislocalization. To confirm the direct cardiotoxic effects of trametinib, human cardiac organoids were treated for 6 days, followed by a 6-day media-only recovery. Trametinib-treated organoids exhibited reductions in diameter and contractility, followed by partial recovery with removal of treatment. Conclusions: These data describe pathologic changes observed in trametinib cardiotoxicity, supporting the exploration of drug holidays and alternative pharmacologic strategies for disease prevention.

2.
BMC Geriatr ; 21(1): 118, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568107

RESUMO

BACKGROUND: Chronic venous leg ulcers (CVLUs) are the most common type of lower extremity wound. Even when treated with evidenced-based care, 30-50% of CVLUs fail to heal. A specific gap exists about the association between psychosocial stressors, particularly loneliness, and biomarkers of inflammation and immunity. Loneliness is highly prevalent in persons with CVLUs, has damaging effects on health, and contributes to the development of multiple chronic conditions, promotes aberrant inflammation, and diminishes healing. However, the confluence of loneliness, inflammation and the wound healing trajectory has not been elucidated; specifically whether loneliness substantially mediates systemic inflammation and alters healing over time. This study seeks to address whether there is a specific biomarker profile associated with loneliness, CVLUs, and wound healing that is different from non-lonely persons with CVLUs. METHODS: An observational prospective study will identify, characterize and explore associations among psychosocial stressors, symptoms and biomarkers between 2 CVLU groups, with loneliness+ (n = 28) and without loneliness- (n = 28) during 4 weeks of wound treatment, measured at 3 time points. We will examine psychosocial stressors and symptoms using psychometrically-sound measures include PROMIS® and other questionnaires for loneliness, social isolation, depression, anxiety, stigma, sleep, fatigue, pain, quality of life, cognition, and function. Demographics data including health history, sex, age, wound type and size, wound age, and treatment will be recorded from the electronic health record. We will characterize a biomarker panel of inflammatory genes including chemotaxic and growth factors, vascular damage, and immune regulators that express in response to loneliness to loneliness and CVLUs using well-established RNA sequence and PCR methods for whole blood samples. In an exploratory aim we will explore whether age and sex/psychological stressors and symptoms indicate potential moderation/mediation of the effect of loneliness on the biomarker profile over the study period. DISCUSSION: This study will provide insight into the influence of psychosocial stressors, symptoms, and biological mechanisms on wound healing, towards advancing a future healing prediction model and interventions to address these stressors and symptoms experienced by persons with CVLUs.


Assuntos
Solidão , Úlcera Varicosa , Idoso , Humanos , Inflamação , Estudos Observacionais como Assunto , Estudos Prospectivos , Qualidade de Vida
3.
J Biol Chem ; 295(52): 18091-18104, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33087445

RESUMO

Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Endotélio Vascular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Núcleo Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Mitocôndrias/patologia , Biogênese de Organelas , Consumo de Oxigênio , Fatores de Transcrição/genética
4.
J Mol Cell Cardiol ; 137: 132-142, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31668971

RESUMO

Specification of the primary heart field in mouse embryos requires signaling from the anterior visceral endoderm (AVE). The nature of these signals is not known. We hypothesized that the TGFß-activated kinase (TAK1/Map3k7) may act as a cardiogenic factor, based on its expression in heart-inducing endoderm and its requirement for cardiac differentiation of p19 cells. To test this, mouse embryonic stem (ES) cells overexpressing Map3k7 were isolated and differentiated as embryoid bodies (EBs). Map3k7-overexpressing EBs showed increased expression of AVE markers but interestingly, showed little effect on mesoderm formation and had no impact on overall cardiomyocyte formation. To test whether the pronounced expansion of endoderm masks an expansion of cardiac lineages, chimeric EBs were made consisting of Map3k7-overexpressing ES and wild type ES cells harboring a cardiac reporter transgene, MHCα::GFP, allowing cardiac differentiation to be assessed specifically in wild type ES cells. Wild type ES cells co-cultured with Map3k7-overexpressing cells had a 4-fold increase in expression of the cardiac reporter, supporting the hypothesis that Map3k7 increases the formation of cardiogenic endoderm. To further examine the role of Map3k7 in early lineage specification, other endodermal markers were examined. Interestingly, markers that are expressed in both the VE and later in gut development were expanded, whereas transcripts that specifically mark the early definitive (streak-derived) endoderm (DE) were not. To determine if Map3k7 is necessary for endoderm differentiation, EBs were grown in the presence of the Map3k7 specific inhibitor 5Z-7-oxozeaenol. Endoderm differentiation was dramatically decreased in these cells. Western blot analysis showed that known downstream targets of Map3k7 (Jnk, Nemo-like kinase (NLK) and p38 MAPK) were all inhibited. By contrast, transcripts for another TGFß target, Sonic Hedgehog (Shh) were markedly upregulated, as were transcripts for Gli2 (but not Gli1 and Gli3). Together these data support the hypothesis that Map3k7 governs the formation, or proliferation of cardiogenic endoderm.


Assuntos
Diferenciação Celular , Endoderma/embriologia , Endoderma/enzimologia , Coração/embriologia , MAP Quinase Quinase Quinases/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Organogênese , Animais , Linhagem Celular , Corpos Embrioides/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases , Mesoderma/embriologia , Camundongos , Miócitos Cardíacos/citologia , Regulação para Cima/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
5.
Biochem Pharmacol ; 169: 113644, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31542386

RESUMO

A hallmark of acute kidney injury (AKI) is vascular rarefication and mitochondrial dysfunction. Promoting vascular recovery following AKI could facilitate kidney repair as the vasculature is responsible for oxygen and nutrient delivery to extravascular tissues. Little is known about mitochondrial biogenesis (MB) in endothelial cells, and the role of 5-HT1F receptor signaling in MB has only been studied in epithelial cells. Our laboratory has shown that stimulating MB through the 5-HT1F receptor promotes recovery from AKI and that 5-HT1F receptor knockout mice have decreased MB and poor renal recovery. We hypothesized that the 5-HT1F receptor plays a role in vascular homeostasis and mediates MB in renal endothelial cells. 5-HT1F receptor knockout mice had decreased renal vascular content, as evidenced by decreased CD31+ endothelial cells and αSMA+ vessels. Human glomerular endothelial cells (HEC) and mouse glomerular endothelial cells (MEC) expressed the 5-HT1F receptor. Treatment of HEC and MEC with 5-HT1F receptor agonists LY344864 or lasmiditan (0-500 nM) induced MB as evidenced by maximal mitochondrial respiration, a marker of MB. HEC and MEC treated with lasmiditan or LY344864 also had increased nuclear- and mitochondrial-encoded proteins (PGC1α, COX-1, and VDAC), and mitochondrial number, confirming MB. Treatment of HEC with LY344864 or lasmiditan enhanced endothelial branching morphogenesis and migration, indicating a role for 5-HT1F receptor stimulation in angiogenic pathways. We propose that stimulation of 5-HT1F receptor is involved in MB in endothelial cells and that treatment with 5-HT1F receptor agonists could restore stimulate repair and recovery following kidney injury.


Assuntos
Células Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Biogênese de Organelas , Receptores de Serotonina/fisiologia , Injúria Renal Aguda/etiologia , Animais , Benzamidas/farmacologia , Carbazóis/farmacologia , Células Cultivadas , Fluorbenzenos/farmacologia , Rim/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/farmacologia , Piridinas/farmacologia
6.
BMC Cancer ; 19(1): 491, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122207

RESUMO

BACKGROUND: Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. METHODS: Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. RESULTS: Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. CONCLUSIONS: These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Oncogenes , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular , Proliferação de Células , Cromossomos Humanos Par 8/genética , Intervalo Livre de Doença , Everolimo/farmacologia , Feminino , Amplificação de Genes , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Fosfoproteínas/genética , Fosforilação , Prognóstico , Receptores de Estrogênio , Recidiva , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transfecção
7.
Wound Repair Regen ; 27(4): 335-344, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30805987

RESUMO

Large bone injuries, defects, and chronic wounds present a major problem for medicine. Several therapeutic strategies are used clinically to precipitate bone including a combination therapy delivering osteoinductive bone morphogenetic protein 2 (rhBMP-2) via an osteoconductive scaffold (absorbable collagen sponge [ACS], i.e., INFUSE). Adverse side effects reportedly associated with rhBMP2 administration include rampant inflammation and clinical failures. Although acute inflammation is necessary for proper healing in bone, inflammatory cascade dysregulation can result in sustained tissue damage and poor healing. We hypothesized that a subclinical dose of rhBMP2 modeled in the murine calvarial defect would not precipitate alterations to inflammatory markers during acute phases of bone wound healing. We utilized the 5 mm critical size calvarial defect in C57BL6 wild-type mice which were subsequently treated with ACS and a subclinical dose of rhBMP2 shown to be optimal for healing. Three and 7-day postoperative time points were used to assess the role that rhBMP-2 plays in modulating inflammation vs. ACS alone by cytokine array and histological interrogation. Data revealed that rhBMP-2 delivery resulted in substantial modulation of several markers associated with inflammation, most of which decreased to levels similar to control by the 7-day time point. Additionally, while rhBMP-2 administration increased macrophage response, this peptide had a little noticeable effect on traditional markers of macrophage polarization (M1-iNOS, M2-Arg1). These results suggest that rhBMP-2 delivered at a lower dose does not precipitate rampant inflammation. Thus, an assessment of dosing for rhBMP-2 therapies may lead to better healing outcomes and less surgical failure.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Colágeno/farmacologia , Fraturas Ósseas/patologia , Inflamação/patologia , Osteogênese/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Implantes Absorvíveis , Animais , Modelos Animais de Doenças , Fraturas Ósseas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Alicerces Teciduais , Cicatrização/fisiologia
8.
PLoS One ; 10(5): e0127876, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955155

RESUMO

Treatment of cutaneous wounds with poly-N-acetyl-glucosamine containing nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increased wound closure, antibacterial activities and innate immune responses. We have shown that Akt1 plays a central role in the regulation of these activities. Here, we show that pGlcNAc treatment of cutaneous wounds results in a smaller scar that has increased tensile strength and elasticity. pGlcNAc treated wounds exhibit decreased collagen content, increased collagen organization and decreased myofibroblast content. A fibrin gel assay was used to assess the regulation of fibroblast alignment in vitro. In this assay, fibrin lattice is formed with two pins that provide focal points upon which the gel can exert force as the cells align from pole to pole. pGlcNAc stimulation of embedded fibroblasts results in cellular alignment as compared to untreated controls, by a process that is Akt1 dependent. We show that Akt1 is required in vivo for the pGlcNAc-induced increased tensile strength and elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing.


Assuntos
Acetilglucosamina/administração & dosagem , Cicatriz/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pele/lesões , Resistência à Tração/efeitos dos fármacos , Acetilglucosamina/química , Acetilglucosamina/farmacologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Nanofibras/química , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Cicatrização
9.
FASEB J ; 28(1): 395-407, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24081905

RESUMO

Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (~5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ~1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.


Assuntos
Autofagia/fisiologia , Carioferinas/metabolismo , Mitocôndrias/metabolismo , Renovação Mitocondrial/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Autofagia/genética , Western Blotting , Imunofluorescência , Células Endoteliais da Veia Umbilical Humana , Imunoprecipitação , Carioferinas/genética , Camundongos , Camundongos Knockout , Renovação Mitocondrial/genética , Proteínas Proto-Oncogênicas c-akt/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Citoplasmáticos e Nucleares/genética
10.
Dev Biol ; 373(1): 163-75, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23103584

RESUMO

To evaluate potential roles of nitric oxide (NO) in the regulation of the endothelial lineage and neovascular processes (vasculogenesis and angiogenesis) we evaluated endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (p-eNOS) expression in 7.2-8.5 days post-coitum (dpc) mouse embryos. Analysis revealed that p-eNOS((S1177)) but not P-eNOS((S617)) or P-eNOS((T495)) was expressed in a subpopulation of angioblasts (TAL-1(+)/Flk-1(+)/CD31(-)/CD34(-)/VE-Cadherin(-)) at 7.2 dpc. A role of the VEGF/Akt1/eNOS signaling pathway in the regulation of the endothelial cell (EC) lineage was suggested by the strong correlation observed between cell division and p-eNOS((S1177)) expression in both angioblasts and embryonic endothelial cells (EECs, TAL-1(+)/Flk-1(+)/CD31(+)/CD34(+)/VE-Cadherin(+)). Our studies using Akt1 null mouse embryos show a reduction in p-eNOS((S1177)) expression in angioblast and EECs that is correlated with a decrease in endothelial cell proliferation and results in changes in VEGF-induced vascular patterning. Further, we show that VEGF-mediated cell proliferation in Flk-1(+) cells in allantoic cultures is decreased by pharmacological inhibitors of the VEGF/Akt1/eNOS signaling pathways. Taken together, our findings suggest that VEGF-mediated eNOS phosphorylation on Ser1177 regulates angioblast and EEC division, which underlies the formation of blood vessels and vascular networks.


Assuntos
Proliferação de Células , Células Endoteliais/fisiologia , Mioblastos Cardíacos/fisiologia , Neovascularização Fisiológica/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alantoide/citologia , Animais , Linhagem Celular , Linhagem da Célula/fisiologia , Células Endoteliais/metabolismo , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Mioblastos Cardíacos/metabolismo , Fosforilação , Transdução de Sinais/genética
11.
J Vasc Res ; 49(2): 89-100, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22249024

RESUMO

BACKGROUND: Poly-N-acetyl glucosamine nanofibers derived from a marine diatom have been used to increase cutaneous wound healing. These nanofibers exert their activity by specifically activating integrins, which makes them a useful tool for dissecting integrin-mediated pathways. We have shown that short-fiber poly-N-acetyl glucosamine nanofiber (sNAG) treatment of endothelial cells results in increased cell motility and metabolic rate in the absence of increased cell proliferation. RESULTS: Using a Seahorse Bioanalyzer to measure oxygen consumption in real time, we show that sNAG treatment increases oxygen consumption rates, correlated with an integrin-dependent activation of Akt1. Akt1 activation leads to an increase in the expression of the transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). This is not due to increased mitochondrial biogenesis, but is associated with an increase in the expression of pyruvate dehydrogenase kinase 4 (PDK4), suggesting regulation of fatty acid oxidation. Blockade of fatty acid oxidation with etomoxir, an O-carnitine palmitoyltransferase-1 inhibitor, blocks the sNAG-dependent increased oxygen consumption. (3)H-palmitate uptake experiments indicate a PDK4-dependent increase in fatty acid oxidation, which is required for nanofiber-induced cell motility. CONCLUSIONS: Our findings imply a linear pathway whereby an integrin-dependent activation of Akt1 leads to increased PGC-1α and PDK4 expression resulting in increased energy production by fatty acid oxidation.


Assuntos
Acetilglucosamina/farmacologia , Ácidos Graxos/metabolismo , Proteínas de Choque Térmico/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/biossíntese , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Compostos de Epóxi/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanofibras , Oxirredução , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Quinases/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Regulação para Cima
12.
Int J Cancer ; 130(3): 532-43, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21351097

RESUMO

The PI3 kinase/Akt pathway is commonly deregulated in human cancers, functioning in such processes as proliferation, glucose metabolism, survival and motility. We have previously described a novel function for one of the Akt isoforms (Akt3) in primary endothelial cells: the control of VEGF-induced mitochondrial biogenesis. We sought to determine if Akt3 played a similar role in carcinoma cells. Because the PI3 kinase/Akt pathway has been strongly implicated as a key regulator in ovarian carcinoma, we tested the role of Akt3 in this tumor type. Silencing of Akt3 by shRNA did not cause an overt reduction in mitochondrial gene expression in a series of PTEN positive ovarian cancer cells. Rather, we find that blockade of Akt3, results in smaller, less vascularized tumors in a xenograft mouse model that is correlated with a reduction in VEGF expression. We find that blockade of Akt3, but not Akt1, results in a reduction in VEGF secretion and retention of VEGF protein in the endoplasmic reticulum (ER). The reduction in secretion under conditions of Akt3 blockade is, at least in part, due to the down regulation of the resident golgi protein and reported tumor cell marker, RCAS1. Conversely, over-expression of Akt3 results in an increase in RCAS1 expression and in VEGF secretion. Silencing of RCAS1 using siRNA inhibits VEGF secretion. These findings suggest an important role for Akt3 in the regulation of RCAS1 and VEGF secretion in ovarian cancer cells.


Assuntos
Neovascularização Patológica , Neoplasias Ovarianas/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Camundongos SCID , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neovascularização Patológica/genética , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Trauma ; 71(2 Suppl 1): S194-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21814118

RESUMO

BACKGROUND: The purpose of this study was to evaluate the ability of a membrane material, consisting only of short poly-N-acetyl glucosamine (sNAG) nanofibers, to regenerate bone tissue after implantation into circular holes in the rabbit femur. METHODS: Three circular holes were created in the femurs of five male New Zealand white rabbits. The holes were ∼ 2.0 mm in diameter. Three holes in the left femur were implanted with the comparative control substance (Bone Wax; Ethicon, Inc.); three holes in the right femur were implanted with the sNAG membrane test article. Animals were killed 4 weeks after surgery, and macroscopic evaluation of the implant sites was made. Hematoxylin and eosin histology was performed on both control and test sites. RESULTS: All control (bone wax) sites had visible holes (defects) at the 28-day end point of the study and showed no evidence of new bone formation. All the 15 sNAG test sites were found to have new bone tissue present in the bone hole defects. Hematoxylin and eosin histology of the sNAG-treated test sites showed the presence of osteoblasts, osteocytes, and trabecula of new bone formation at the 28-day end point of the study. CONCLUSIONS: The sNAG membrane test material activated the regeneration of new bone tissue in a rabbit femur bone model after 28 days of implantation, whereas the control bone wax material did not.


Assuntos
Acetilglucosamina/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fêmur/efeitos dos fármacos , Fêmur/lesões , Animais , Modelos Animais de Doenças , Fêmur/patologia , Masculino , Nanofibras , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Coelhos
14.
PLoS One ; 6(4): e18996, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21559496

RESUMO

BACKGROUND: Treatment of cutaneous wounds with poly-N-acetyl-glucosamine nanofibers (sNAG) results in increased kinetics of wound closure in diabetic animal models, which is due in part to increased expression of several cytokines, growth factors, and innate immune activation. Defensins are also important for wound healing and anti-microbial activities. Therefore, we tested whether sNAG nanofibers induce defensin expression resulting in bacterial clearance. METHODOLOGY: The role of sNAG in defensin expression was examined using immunofluoresence microscopy, pharmacological inhibition, and shRNA knockdown in vitro. The ability of sNAG treatment to induce defensin expression and bacterial clearance in WT and AKT1-/- mice was carried out using immunofluoresent microscopy and tissue gram staining. Neutralization, using an antibody directed against ß-defensin 3, was utilized to determine if the antimicrobial properties of sNAG are dependent on the induction of defensin expression. CONCLUSIONS/FINDINGS: sNAG treatment causes increased expression of both α- and ß-type defensins in endothelial cells and ß-type defensins in keratinocytes. Pharmacological inhibition and shRNA knockdown implicates Akt1 in sNAG-dependent defensin expression in vitro, an activity also shown in an in vivo wound healing model. Importantly, sNAG treatment results in increased kinetics of wound closure in wild type animals. sNAG treatment decreases bacterial infection of cutaneous wounds infected with Staphylococcus aureus in wild type control animals but not in similarly treated Akt1 null animals. Furthermore, sNAG treatment of S. aureus infected wounds show an increased expression of ß-defensin 3 which is required for sNAG-dependent bacterial clearance. Our findings suggest that Akt1 is involved in the regulation of defensin expression and the innate immune response important for bacterial clearance. Moreover, these findings support the use of sNAG nanofibers as a novel method for enhancing wound closure while simultaneously decreasing wound infection.


Assuntos
Acetilglucosamina/química , Nanofibras/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cicatrização , Animais , Anti-Infecciosos/farmacologia , Citocinas/metabolismo , Células Endoteliais/citologia , Queratinócitos/citologia , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , RNA Interferente Pequeno/metabolismo , beta-Defensinas/metabolismo
15.
Ann Surg ; 250(2): 322-30, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19638916

RESUMO

INTRODUCTION: In several fields of surgery, the treatment of complicated tissue defects is an unsolved clinical problem. In particular, the use of tissue scaffolds has been limited by poor revascularization and integration. In this study, we developed a polymer, poly-N-acetyl-glucosamine (sNAG), with bioactive properties that may be useful to overcome these limitations. OBJECTIVE: To develop a scaffold-like membrane with bioactive properties and test the biologic effects in vitro and in vivo in diabetic wound healing. METHODS: In vitro, cells-nanofibers interactions were tested by cell metabolism and migration assays. In vivo, full thickness wounds in diabetic mice (n = 15 per group) were treated either with sNAG scaffolds, with a cellulosic control material, or were left untreated. Wound healing kinetics, including wound reepithelialization and wound contraction as well as microscopic metrics such as tissue growth, cell proliferation (Ki67), angiogenesis (PECAM-1), cell migration (MAP-Kinase), and keratinocyte migration (p 63) were monitored over a period of 28 days. Messenger RNA levels related to migration (uPAR), angiogenesis (VEGF), inflammatory response (IL-1beta), and extracellular matrix remodeling (MMP3 and 9) were measured in wound tissues. RESULTS: sNAG fibers stimulated cell metabolism and the in vitro migratory activity of endothelial cells and fibroblasts. sNAG membranes profoundly accelerated wound closure mainly by reepithelialization and increased keratinocyte migration (7.5-fold), granulation tissue formation (2.8-fold), cell proliferation (4-fold), and vascularization (2.7-fold) compared with control wounds. Expression of markers of angiogenesis (VEGF), cell migration (uPAR) and ECM remodeling (MMP3, MMP9) were up-regulated in sNAG treated wounds compared with controls. CONCLUSIONS: The key mechanism of the bioactive membranes is the cell-nanofiber stimulatory interaction. Engineering of bioactive materials may represent the clinical solution for a number of complex tissue defects.


Assuntos
Implantes Absorvíveis , Acetilglucosamina/uso terapêutico , Complicações do Diabetes/terapia , Úlcera Cutânea/terapia , Alicerces Teciduais , Cicatrização/efeitos dos fármacos , Acetilglucosamina/farmacologia , Animais , Técnicas de Cultura de Células , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Úlcera Cutânea/metabolismo , Úlcera Cutânea/patologia , Cicatrização/fisiologia
16.
FASEB J ; 22(9): 3264-75, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18524868

RESUMO

The growth factor, vascular endothelial growth factor (VEGF), induces angiogenesis and promotes endothelial cell (EC) proliferation. Affymetrix gene array analyses show that VEGF stimulates the expression of a cluster of nuclear-encoded mitochondrial genes, suggesting a role for VEGF in the regulation of mitochondrial biogenesis. We show that the serine threonine kinase Akt3 specifically links VEGF to mitochondrial biogenesis. A direct comparison of Akt1 vs. Akt3 gene silencing was performed in ECs and has uncovered a discrete role for Akt3 in the control of mitochondrial biogenesis. Silencing of Akt3, but not Akt1, results in a decrease in mitochondrial gene expression and mtDNA content. Nuclear-encoded mitochondrial gene transcripts are also found to decrease when Akt3 expression is silenced. Concurrent with these changes in mitochondrial gene expression, lower O(2) consumption was observed. VEGF stimulation of the major mitochondrial import protein TOM70 is also blocked by Akt3 inhibition. In support of a role for Akt3 in the regulation of mitochondrial biogenesis, Akt3 silencing results in the cytoplasmic accumulation of the master regulator of mitochondrial biogenesis, PGC-1alpha, and a reduction in known PGC-1alpha target genes. Finally, a subtle but significant, abnormal mitochondrial phenotype is observed in the brain tissue of AKT3 knockout mice. These results suggest that Akt3 is important in coordinating mitochondrial biogenesis with growth factor-induced increases in cellular energy demands.


Assuntos
Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Células Cultivadas , Endotélio Vascular/citologia , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/metabolismo
17.
J Invest Dermatol ; 128(8): 1906-14, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18323784

RESUMO

Acutely transforming retrovirus AKT8 in rodent T-cell lymphoma (Akt) is a serine/threonine kinase that plays important roles in survival, cell-cycle progression, and cell proliferation, and has recently been implicated in collagen regulation. The aim of this study was to determine the role of Akt in collagen deposition by normal dermal fibroblasts, and to determine the sensitivity of cultured systemic sclerosis (SSc) fibroblasts to Akt inhibition. We show that blockade of Akt using pharmacological inhibitors, small interfering RNA (siRNA), and a dominant-negative Akt mutant led to inhibition of the basal type I collagen production. Furthermore, inhibition of Akt upregulated basal matrix metalloproteinase 1 (MMP1) production and reversed the inhibitory effect of transforming growth factor-beta (TGF-beta) on MMP1 gene expression. In addition, SSc fibroblasts were more sensitive to Akt inhibition, with respect to collagen and MMP1 production. These findings suggest that in human dermal fibroblasts, Akt has dual profibrotic effects, increasing collagen synthesis and decreasing its degradation via downregulation of MMP1. Akt could directly contribute to elevated collagen in SSc fibroblasts and it may represent an attractive target for therapy of SSc fibrosis.


Assuntos
Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Proteína Oncogênica v-akt/antagonistas & inibidores , Escleroderma Sistêmico/metabolismo , Pele/metabolismo , Actinas/metabolismo , Biópsia , Estudos de Casos e Controles , Células Cultivadas , Colágeno/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , RNA Interferente Pequeno/farmacologia , Escleroderma Sistêmico/patologia , Pele/citologia , Pele/patologia , Fator de Crescimento Transformador beta/farmacologia
18.
J Vasc Res ; 45(3): 222-32, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18097146

RESUMO

Poly-N-acetyl glucosamine (pGlcNAc) nanofiber-derived materials effectively achieve hemostasis during surgical procedures. Treatment of cutaneous wounds with pGlcNAc in a diabetic mouse animal model causes marked increases in cell proliferation and angiogenesis. We sought to understand the effect of the pGlcNAc fibers on primary endothelial cells (EC) in culture and found that pGlcNAc induces EC motility. Cell motility induced by pGlcNAc fibers is blocked by antibodies directed against alphaVbeta3 and alpha5beta1 integrins, both known to play important roles in the regulation of EC motility, in vitroand in vivo. pGlcNAc treatment activates mitogen-activated protein kinase and increases Ets1, vascular endothelial growth factor (VEGF) and interleukin 1 (IL-1) expression. pGlcNAc activity is not secondary to its induction of VEGF; inhibition of the VEGF receptor does not inhibit the pGlcNAc-induced expression of Ets1 nor does pGlcNAc cause the activation of VEGF receptor. Both dominant negative and RNA interference inhibition of Ets1 blocks pGlcNAc-induced EC motility. Antibody blockade of integrin results in the inhibition of pGlcNAc-induced Ets1 expression. These findings support the hypothesis that pGlcNAc fibers induce integrin activation which results in the regulation of EC motility and thus in angiogenesis via a pathway dependent on the Ets1 transcription factor and demonstrate that Ets1 is a downstream mediator of integrin activation.


Assuntos
Acetilglucosamina/farmacologia , Movimento Celular/efeitos dos fármacos , Células Endoteliais/fisiologia , Integrinas/fisiologia , Nanoestruturas , Neovascularização Fisiológica/efeitos dos fármacos , Proteína Proto-Oncogênica c-ets-1/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Ativação Enzimática , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Mol Cell Biol ; 27(9): 3353-66, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17339335

RESUMO

Ets1 is a member of the Ets transcription factor family. Alternative splicing of exon VII results in two naturally occurring protein isoforms: full-length Ets1 (p51-Ets1) and Ets1(DeltaVII) (p42-Ets1). These isoforms bear key distinctions regarding protein-protein interactions, DNA binding kinetics, and transcriptional target specificity. Disruption of both Ets1 isoforms in mice results in the loss of detectable NK and NKT cell activity and defects in B and T lymphocytes. We generated mice that express only the Ets1(DeltaVII) isoform. Ets1(DeltaVII) homozygous mice express no p51-Ets1 and elevated levels of the p42-Ets1 protein relative to the wild type and display increased perinatal lethality, thymomegaly, and peripheral lymphopenia. Proliferation was increased in both the thymus and the spleen, while apoptosis was decreased in the thymus and increased in the spleen of homozygotes. Significant elevations of CD8(+) and CD8(+)CD4(+) thymocytes were observed. Lymphoid cell (CD19(+), CD4(+), and CD8(+)) reductions were predominantly responsible for diminished spleen cellularity, with fewer memory cells and a failure of homeostatic proliferation to maintain peripheral lymphocytes. Collectively, the Ets1(DeltaVII) mutants demonstrate lymphocyte maturation defects associated with misregulation of p16(Ink4a), p27(Kip1), and CD44. Thus, a balance in the differential regulation of Ets1 isoforms represents a potential mechanism in the control of lymphoid maturation and homeostasis.


Assuntos
Homeostase , Linfócitos/citologia , Linfócitos/metabolismo , Proteína Proto-Oncogênica c-ets-1/deficiência , Proteína Proto-Oncogênica c-ets-1/metabolismo , Baço/metabolismo , Timo/metabolismo , Animais , Sequência de Bases , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação da Expressão Gênica , Heterozigoto , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Camundongos , Dados de Sequência Molecular , Fenótipo , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Baço/citologia , Timo/citologia , Transcrição Gênica/genética
20.
Exp Cell Res ; 312(7): 1164-73, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16527273

RESUMO

Akt kinase is an important downstream effector of VEGF in primary endothelial cells (EC), promoting angiogenesis by increased cellular survival, motility and tubulogenesis. Akt1 is the founding member of a family of serine threonine kinases thought to have overlapping function. We sought to determine if other Akt family members were also regulated by VEGF in EC. We show that treatment of EC with the angiogenic inducers VEGF or sphingosine-1-phosphate (S1P) results in an increased stabilization of Akt3 mRNA, concurrent with a PI3 kinase-dependent, Akt1-independent increase in both the protein and its phosphorylation. Given the similarity of Akt3 regulation by VEGF and S1P, the sensitivity of VEGF stimulation to the Gi-protein uncoupling reagent, pertussis toxin was tested and shows that VEGF stimulation requires Gi-protein signaling. We show that the VEGF stimulates the expression of Edg3/S1P3 (S1P3) and that expression of this Gi-protein-coupled receptor is both sufficient and necessary for the expression of Akt3. Blockade of a single isoform does not overtly affect cellular function, whereas inhibition of both kinases results in an increase in apoptosis and a down-regulation of cyclin D3. These results suggest a model whereby extracellular cues maintain total Akt kinase levels through the regulation of specific isoform expression providing a fail-safe mechanism to maintain necessary levels of Akt kinase activity.


Assuntos
Células Endoteliais/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/biossíntese , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/análogos & derivados , Fator A de Crescimento do Endotélio Vascular/fisiologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Lisofosfolipídeos/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , Esfingosina/metabolismo , Esfingosina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...